Inquiry: the research cycle

In the same vein as the last post, here’s a breakdown of how we used published sources to build our model of how electricity works.

  1. I record questions that come up during class.  I track them on a mind-map.
  2. I pull out the list of questions and find the ones that are not measurable using our lab equipment, and relate to the unit we’re working on.
  3. I post the list at the front of the room and let students write their names next to something that interests them.  If I’m feeling stressed out about making sure they’re ready for their impending next courses/entry into the work world, I restrict the pool of questions to the ones I think are most significant.  If I’m not feeling stressed out, or the pool of questions aligns closely with our course outcomes, I let them pick whatever they want.
  4. The students prepare a first draft of a report answering the question.  They use a standard template (embedded below).  They must use at least two sources, and at least one source must be a professional-quality reference book or textbook.
  5. I collect the reports, write feedback about their clarity, consistency and causality, then hand back my comments so they can prepare a second draft.
  6. Students turn in a second draft.  If they have blatantly not addressed my concerns, back it goes for another draft.  They learn quickly not to do this.  I make a packet containing all the second drafts and photocopy the whole thing for each student. (I am so ready for 1:1 computers, it’s not funny.)
  7. I hand out the packets and the Rubric for Assessing Reasoning that we’ve been using/developing.  During that class, each student must write feedback to every other student. (Note to self — this worked with 12 students.  Will it work with 18?)
  8. I collect the feedback.  I assess it for clarity, consistency, and usefulness — does it give specific information about what the reviewee is doing well/should improve.  If the feedback meets my criteria, I update my gradebook — giving well-reasoned feedback is one of the skills on the skill sheet.
  9. If the feedback needs work, it goes back to the reviewer, who must write a second draft.  If the feedback meets the criteria (which it mostly did), then the original goes back to the reviewer, and a photocopy goes forward to the reviewee.  (Did I mention I’m ready for 1:1 computers?)
  10. Everyone now works on a new draft of their presentation, taking into account the feedback they got from their classmates.
  11. I collect the new drafts.  If I’m not confident that the class will be able to have a decent conversation about them, I might write feedback and ask for another draft. (Honest, this does not go on forever.  The maximum was 4, and that only happened once.) I make yet another packet of photocopies.
  12. Next class, we will push the desks into a “boardroom” shape, and some brave soul will volunteer to go first.  Everyone takes out two documents: the speaker’s latest draft, and the feedback they wrote to that speaker.

The speaker summarizes how they responded to people’s feedback, and tells us what they believe we can add to the model.  We evaluate each claim for clarity, consistency, causality.  We check the feedback we wrote to make sure the new draft addressed our questions.  We try to make it more precise by asking “where,” “when,” “how much,” etc.  We try to pull out as many connections to the model as we can.  The better we do this, the more ammo the class will have for answering questions on the next quiz.

Lots of questions come up that we can’t answer based on the model and the presenter’s sources.  Sometimes another student will pipe up with “I think I can answer that one with my presentation.”  Other times the question remains unanswered, waiting for the next round (or becoming a level-5 question).  As long as something gets added to the model, the presenter is marked complete for the skill called “Contribute an idea about [unit] to the model.”

We do this 4-5 times during the semester (once for each unit).

Example of a student’s first draft

I was pretty haphazard in keeping electronic records last semester.  I’ve got examples of each stage of the game, but they’re from different units — sorry for the lack of narrative flow.

This is not the strongest first draft I’ve seen; it illustrates a lot of common difficulties (on which, more below).  I do want to point out that I’m not concerned with the spelling.  I’ve talked with the technical writing instructor about possible collaborations; in the future, students might do something like submit their paper to both instructors, for different kinds of feedback.  I’m also not concerned with the informal tone.  In fact, I encourage it.  Getting the students to the point where they believe that “someone like them” can contribute to a scientific conversation, must contribute to that conversation, or indeed that science is a conversation, is a lot of ground to cover.  There is a place for formal lab reports and the conventions of intellectual discourse, but at this point in the game we hadn’t developed a need for them.

Feedback I would write to this student

Source #1: Thanks for including the description of what the letters mean.  It improves the clarity of the formula.”

Source #2: It looks like you’ve used the same source both times.  Make sure to include a second source — see me if you could use some help finding a good one.

Clarity: In source #1, the author mentions “lowercase italic letters v and i…” but I don’t see any lower case v in the formula.  Also, source #1 refers to If, but I don’t see that in the formula either. Can you clarify?

Cause: Please find at least one statement of cause and effect that you can make about this formula.  It can be something the source said or something you inferred using the model.  What is causing the effect that the formula describes?

Questions that need to be answered: That’s an interesting question.  Are you referring to the primary and secondary side of a transformer?  If so, does the source give you any information about this? If you can’t find it, bring the source with you and let’s meet to discuss.

Common trouble spots

It was typical for students to have trouble writing causal statements.  I’m looking for any cause and effect pair that connect to the topic at hand.  I think the breadth of the question is what makes it hard for students to answer.  They don’t necessarily have to tell me “what causes the voltage of a DC inductor to be described by this formula” (which would be way out of our league).  I’d be happy with “the inductor’s voltage is caused by the current changing suddenly when the circuit is turned on,” or something to that effect.  I’m not sure what to do about this, except to demonstrate that kind of thinking explicitly, and continue giving feedback.

It was also common for students to have trouble connecting ideas to the model.  If the question was about something new, they would often say “nothing in the model yet about inductors…” when they could have included any number of connections to ideas about voltage, current, resistance, atoms, etc.  I go back and forth about this.

In the example above, I could write feedback telling the student I found 5 connections to the model in my first three minutes of looking, and I expect them to find at least that many.  I could explicitly ask them to find something in the model that seemed to contradict the new idea (I actually had a separate section for contradictions in my first draft of the template).  That helped, but students too often wrote “no contradictions” without really looking.  Sometimes I just wait for the class discussion, and ask the class to come up with more connections, or ask specific questions about how this connects to X or Y.  This usually works well, because that’s the point at which they’re highly motivated to prevent poorly reasoned ideas from getting in to the model.  Still thinking about this.

Example Student Feedback

(click through to see full size)

I don’t have a copy of the original paper on “Does the thickness of wire affect resistance,” but here is some feedback a classmate wrote back.

Again, you can see that this student answered “What is the chain of cause and effect” with “No.”  Part of the problem is that this early draft of the feedback rubric asks, in the same box, if there are gaps in the chain.  In the latest draft, I have combined some of the boxes and simplified the questions.

What’s strong about this feedback: this student is noticing the relationship between cross-sectional area of a wire (gauge), and cross-sectional area of a resistor.  I think this is a strong inference, well-supported by the model.  The student has also taken care to note their own experience with different “sizes” of resistor (in other words, resistors of the same value that are cross-sectionally larger/smaller).  Finally, they propose to test that inference.  The proposed test will contradict the inference, which will lead to some great questions about power dissipation.  Here the model is working well: supporting our thinking about connections, and leading us to fruitful tests and questions.

Example of my first draft

Sometimes I wrote papers myself.  This happened if we needed 12 questions answered on a topic, but there were only 11 students.  It also happened when we did a round of class discussions only to realize that everyone’s paper depended on some foundational question being answered, but no one had chosen that question.  Finally, I sometimes used it if I needed the students to learn a particular thing at a particular time (usually because they needed the info to make sense of a measurement technique or new equipment). This gave me a chance to model strong writing, and how to draw conclusions based on the accepted model.  It was good practice for me to draw only the conclusions that could be supported by my sources — not the conclusions that I “knew” to be true.

I tried to keep the tone conversational — similar to how I would talk if I was lecturing — and to expose my sense-making strategies, including the thoughts and questions I had as I read.

In class, I would distribute my paper and the rubrics.  Students would spend the class reading and writing me some feedback.  I would circulate, answering questions or helping with reading comprehension.  I would collect the feedback and use it to prepare a second draft, exactly as they did.  If nothing else, it really sold the value of good technical writing.  The students often commented on writing techniques I had used, such as cutting out sections of a quote with ellipses or using square brackets to clarify a quote.

Reading student feedback on my presentations was really interesting.  I would collect their rubrics and use it to prepare a second draft.  The next day, I would discuss with them my answers and clarifications, and they would vote on whether to accept my ideas to the model.  At the beginning of the year they accepted them pretty uncritically, but by the end of the year I was getting really useful feedback and suggestions about how to make my model additions clearer or more precise.

I wish I had some student feedback to show you, but unfortunately I didn’t keep copies for myself.  Definitely something I will do this year.

How It’s Going

I’m pretty satisfied with this.  It might seem like writing all that feedback would be impossible, but it actually goes pretty quickly.

Plan for improvement: Insist on electronic copies.  Last year I gave the students the choice of emailing their file to me or making hard copies for everyone and bringing to class.  Because bringing hard copies bought them an extra 12 hours to work on it, many did that.  But being able to copy and paste my comments would help.  Just being able to type my comments is a huge time-saver (especially considering the state of my hand-writing).

The students benefit tremendously from the writing practice, the thinking practice and, nothing to sneeze at, the “using a word-processor correctly” practice.  They also benefit from the practice at “giving critical feedback in a respectful way,” including to the teacher (!), and “telling someone what is strong about their work, not just what is weak.” If their writing is pretentious, precious, or unnecessarily long, their classmates will have their heads.  And, reading other students’ writing makes them much more aware of their own writing habits and choices.

I’m not grading the presentation, so I don’t have to waste time deliberating about the grade, or whether it’s “good enough.”  I just read it and respond, in a fairly conversational way.  It’s a window into my students’ thinking that puts zero pressure on me, and very little pressure on the students — it’s intellectually stimulating, I don’t have to get to every single student between 9:25 and 10:20, and I can do it over an iced coffee on a patio somewhere.  I won’t lie — it’s a lot of work.  But not as much work as grading long problem sets (like I did in my first year), way more interesting, and with much higher dividends.


MS Word template students used for their papers

Rubric students used for writing feedback.  Practically identical but formatted for hand-written comments

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s