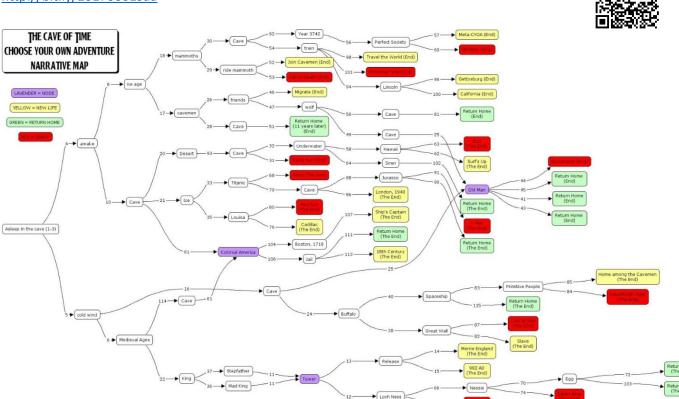
Workshop Guide: Exploring Student-Designed Assessment

Pan-Canadian Conference on Universal Design for Learning

May 31 – June 2, 2017

Presenters

- Mylène DiPenta
- Ryan Pulsifer
- Tim Bargen


Agenda

- 1. Description of 2 techniques for enabling student-designed assessment
- 2. Student perspectives
- 3. Exercises for you to try:
 - a. Skill sheet
 - b. Format-Independent Rubric
- 4. Questions

Workshop URL

http://shiftingphases.com/2017/05/29/exploring-student-designed-assessment

http://bit.ly/20170601sda

Example 1: Skill Sheet

To implement the UDL philosophy of "tight goals, loose means", I switched my assessments from being focused on tasks (quiz 1, lab 2) to being focused on skills (similar to learning outcomes). For students to take control of when and how they demonstrate their mastery of those skills, it helps to have an organized way to track what is and isn't complete. I call this a "skill sheet," and issue one for every major topic we study (typically 3-5 for any given course). Here's how I create one.

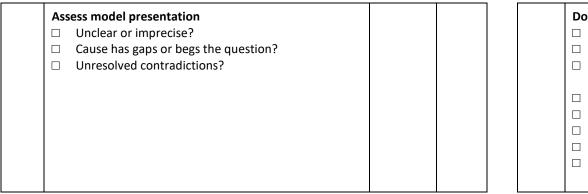
	Ideas	Questions
Identify Outcomes Students will be able to	 Summarize another's point in their own words Improve clarity and precision of a given text by asking questions or making suggestions Identify cause and effect Identify contradictions 	
Define Conjunctive Grading Will you require mastery of mandatory skills before students receive credit for optional skills?	In my system, some skills are required in order to pass and must be fully mastered; others are optional, and it's not necessary even to attempt them.	
Grade Levels <i>How might you translate this</i> <i>into a grade?</i>	Completing all required skills earns a 60%. Mastering additional skills earns an additional 20%. Taking initiative for self-directed learning earns an additional 20%.	
Sketch a Skill Sheet On a separate piece of paper, use the skills and grade levels above to sketch a skill sheet for your course.	See my example below	

Thinking Like a Technician

Goals:

- Summarize someone else's point of view
- Clarify an idea
- Distinguish between a tested idea and an inference
- Identify hazards
- Document best practices

3/5	Demonstrate required concepts
+1	In addition to #3, combine key concepts in circuit applications
+1	In addition to #3, combine skills to learn something new. Requirements:
	- Use at least one skill from this sheet
	- Use at least one other skill (from this sheet, other sheets, other courses, previous experience,
	etc.)
	- Learn something new and explain how it works
	- Document (written description, photos, video, screencast, or any other way)


Theory

Shop

3/5: Required Skills

	In Progress	Mastery		In Progress	Mastery
SummarizeExplain what the author thinksMust be in your own wordsMust not add informationHighlight what is most important			 Interpret ammeter measurements □ Use safely □ Use best practices 		
 Clarify Improve the clarity of a statement Improve the precision of a statement Help us add information or understand better 			Interpret ohmmeter measurements Use safely Use best practices 		
Identify Cause and effect □ State what physically forces something to happen □ Cause and effect must be different things – nothing causes itself			Interpret voltmeter measurements Use safely Use best practices		

+1: Application

Doo	cument Circuits	
	Label all tools and supplies	
	Disassemble and reassemble a plastic base	
	Disassemble and reassemble a ceramic	
	base	
	Build and draw a working circuit	
	Build and draw a non-working circuit	
	Build and draw a wacky circuit	
	Fully document a test circuit	
	Fully document 3 circuits	

+1: Investigation

- □ Find an interesting project on Makezine.com or Instructables.com and build it
- □ Your topic here!

Activity 1: Create a Skill Sheet

	Ideas	Questions
Identify Outcomes		
Students will be able to		
Define Conjunctive Grading		
, ,		
Will you require mastery of		
mandatory skills before		
students receive credit for		
optional skills?		
Grade Levels		
Grade Levels		
How might you translate this		
into a grade?		
Into a grade!		
Sketch a Skill Sheet		
Sketch a Skill Sheet		
On a separate piece of paper,		
use the skills and grade levels		
above to sketch a skill sheet for		
your course.		

Example 2: Make a Format-Independent Rubric

If I'm going to encourage students to choose their own format for demonstrating mastery, I have to be ready for anything. No one's written a folk song about electrons yet, but I'm looking forward to that day. In the meantime, I need a rubric that is format and content independent. This example is one I use for anything that students build – whether they submit a report about it, a video about it, or demonstrate it to me in person.

	Ideas	Questions
Requirements All assignments must include	 a) Predictions of voltage, current, resistance, power b) Measurements of all predicted values c) Comparisons of predictions and measurements d) Discussion of results, including "story of the electrons" Example measurements to back up any points made Possible causes or questions about causes Connections to the class model 	
Create a Rubric that students, and you, can use to assess for mastery	See my example below	
Find the Mistakes in an Example Assessment Create an example assessment containing common errors or omissions, to help students practice using the rubric	See my example below	

My Rubric for Circuits

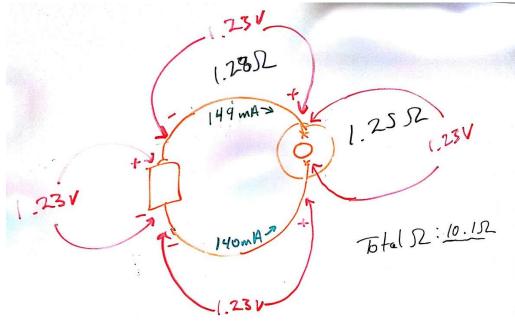


Figure 1: Impossible Circuit

Predictions

- □ Show enough reasoning that I could reproduce your work.
- □ Include a schematic.

Measurements Complete?

- Ohms of all components (if safe to measure)
- **Total ohms** (measured from the battery position, but with the battery removed)
- Amps into and coming out of each component (amount of flow per second)
- Amps going through each wire (amount of flow per second)
- All current directions marked
- □ Volts of all components (difference of energy)
- □ All voltages show which side of the component has higher energy (-), lower energy (+)

Compare

- □ Are the predictions fairly accurate to reality?
- □ How far off are the predictions from reality?
- $\Box \quad \text{If Possible: } \% \ difference = \frac{Measured Predicted}{Measured} * 100\%$

Guidelines

□ You can ignore any measurement that contributes less than 1% to the total effect

Discussion

	Ohms
Tell the story of the	The resistance (ohms) of the two wires is close to the same (1.28 Ω , 1.23 Ω).
electrons	Maybe the reason they are roughly the same difficulty for electrons to travel
Use example	through is because they're about the same length. The lightbulb also has about
measurements to back	the same difficulty for electrons (1.25 Ω). That doesn't make sense to me. I
up each point	thought wires were designed to be the easiest things for electrons to travel
Possible causes or cause	through; why would a lightbulb be just as easy as a wire? Then again, the
questions	filament inside the lightbulb is basically a wire, so maybe that's why.
Connections to the	
model	The total ohms (10.1 Ω) doesn't seem to have any relationship to the ohms of
	the individual components. What is causing this?

	Amps
Tell the story of the	From the measurements, it looks like 140 mA of electrons flowed out of the
electrons	negative side of the battery toward the lightbulb, and another 149 mA flowed
Use example	out of the positive side. Does this mean that electrons are piling up inside the
measurements to back	lightbulb? I think electrons repel each other, so it's also possible that the
up each point	electrons coming in one direction get stopped by the repulsion of the electrons
Possible causes or cause	coming in the other direction.
questions	
Connections to the	Where is the battery getting all these electrons? Also, it's one thing for
model	electrons to come out of the side marked "minus". If it's full of electrons, then
	it makes sense that it's negatively charged. But how can electrons come out of
	the part of the battery that's positively charged? Do these words mean
	something different here?

	Volts
Tell the story of the	It looks like the electrons lose energy on their way from the battery's positive
electrons	terminal to the light (1.23 V of difference). What is making them lose energy?
Use example	The ones that leave from the negative side seem to lose exactly the same
measurements to back	amount. Is that because the two wires have about the same difficulty rating
up each point	(ohms)?
Possible causes or cause	
questions	Then it looks like the electrons on one side of the lightbulb have the same
Connections to the model	amount of energy as the electrons on the other side. Does this mean they're not gaining or losing any energy in the lightbulb?
	Also, what's going on with the energy levels of the battery? It looks like the
	electrons on the negative side start out with more energy than the ones on the
	positive side (by 1.23 V). Then, the two groups of electrons lose the same
	amount of energy (1.23 V each). But somehow at the lightbulb, the two groups
	have the same amount. If they started out with different amounts, and each
	lost 1.23V, shouldn't end up just as different as they were at the beginning?

Activity 2: Make a Format-Independent Rubric

	Ideas	Questions
Requirements		
All assignments must include		
Create a Rubric		
that students, and you, can use to		
assess for mastery		
Find the Mistelias in an Evenuela		
Find the Mistakes in an Example Assessment		
Create an example assessment containing common errors or		
omissions, to help students practice using the rubric		