The first-year students are solving series circuits and explaining what’s happening.  Most are able to connect their answers and thoughts to evidence we’ve gathered this semester.  But most are struggling with the questions about causality.

For each effect they describe mathematically, I ask them to explain what is physically capable of causing that effect. Or, they can choose to explain why the result seems like it can’t be happening.   It doesn’t have to be cannonical, but it must be internally consistent, not circular, and supported by our evidence.  They are struggling most with explaining Kirchhoff’s Voltage Law.  This is understandable — I don’t think I could explain it heuristically either.  However, only one student took the opportunity to say why it doesn’t make sense.

We’ve done lots of practise writing cause statements.  They know what “begging the question” means.  I’ve modelled, and we’ve practised, the importance of saying “I don’t know” when that’s the most accurate thing we can say. Examples of student thinking are below.

I’m tempted to propose a taxonomy of acausal strategies.  Which examples of student thinking do you think fit where?  Would you add or remove categories?   Could you propose some pithy names for them?

  1. It does that because it’s designed to do that
  2. It does that because if it didn’t, this other important thing wouldn’t happen
  3. It does that because there’s a law that says it has to do that
  4. It does that because it does that (begging the question)
  5. It does that just because

My questions are:

“An electron has to use up all its energy that it gets from the battery.  This is caused because if all of the energy wasn’t used, the circuit wouldn’t give accurate results, or work properly.”

“When electrons pass through a component, that causes them to lose energy.  The electrons would have to be able to flow through the circuit in order to keep the current and battery functioning.”

“An electron has to use up all the energy it gets from the battery.  This is caused because if the voltage from the power source is 5V, the electrons have to use up all of their energy, in this case they use up all of it in the resistor (except for the little energy used in the switch).”

“The electrons always use up exactly the energy they gain in the battery because of conservation of energy.”

“It doesn’t make sense that if there’s only one component in the circuit, it always uses up exactly the battery’s voltage.  A higher resistor should be like a steeper hill — harder for the electrons to get past, and requiring more energy.”

I wrote last month about new approaches I’m using to find out what students think, keep track of who thinks what, and let the curriculum be guided by student curiosity. When Dan Meyer reblogged it recently, an interesting conversation started in the comments on that site.  The question seems to be, “how is this different from common practises?”  It sparked my thinking, so I thought I’d continue here.  If you’re a new reader, welcome.

Just Formative Assessment?

It may be helpful to know that I’m teaching a community college course on the basics of electricity.  The students come in brimming with questions, assumptions, and ideas about how electricity works in their lives — phone chargers, car batteries, electric fences, solar panels.  And all new knowledge gets judged immediately in that court of everyday life. What I’m trying to do better is to discover students’ pre-existing ideas and questions, especially the ones I wouldn’t have anticipated.

I agree that there is a way in which this is nothing new; in a way, it’s the definition of formative assessment.

Many formative assessments inquire into students’ thinking as a T/F question: did they get it, yes or no?  Others ask the question as if it’s multiple choice: are their ideas about motion Aristotelian, Newtonian, or something else? (See Hestenes’ work leading to the Force Concept Inventory).  Some assessments focus on misconceptions: which of these mistaken ways of thinking are causing their problems?  Typically there is some instruction or exercise or activity, and then we try to find out what they got out of it.  Or maybe it’s a pre-assessment, and we use the information to address and correct misconceptions.

I’m trying to shift to essay questions:  Not “Do they think correctly” but “What do they think?”  I’m trying to shift it to a different domain: not “what do they think about how this topic was just taught in this class” but “what have they ever thought about this topic, in all the parts of their lives, and how can we weave them together?”  I also hope to ask it for a different reason: not just, “which parts of their ideas are correct”  but also “which parts of their pre-existing ideas are most likely to lead to insight or perplexity?

As Dan points out, there is a “part 2”: This isn’t just about shifting what I do (keep a spreadsheet where I record student ideas and questions, tagged by topic and activity they were working on when they asked it).  It’s also about shifting my self-assessment.  The best activities aren’t just the ones that help students solve problems; the best assessments yield the most honest student thinking.

Which of the activities in your curriculum would you rank highest on that scale?

What do you think makes them work?

Pros: Student Honesty and Motivation

This year, I’ve got a better handle not only on who holds which ideas,  which ideas are half-digested, applied inconsistently or in a self-contradictory way, and what the students are curious about.

The flashlights you shake to charge — do they work like how friction can transfer electrons from a cat’s fur to a glass rod?

What happens if you try to charge a battery but the volts are lower than the battery you’re trying to charge?

Batteries’ don’t get heavier when you charge them — that is evidence that electrons don’t weigh much.

For example, if I was looking for a way into the superposition theorem, I couldn’t ask for better than this.

Cons: Fear and Conflict

I’ve written extensively about the fear, anger, conflict, and defensiveness that come to the surface when I encourage students to build a practise of constant re-evaluation, rather than certainty.   What are your suggestions for helping students re-evaluate things when they’re sure they already know it? What are your suggestions for helping students notice when common sense pre-conceptions and new ideas aren’t talking to each other?

Bonus points: what are your suggestions for helping teachers re-evaluate things when we’re sure we already know it?  What about for helping teachers notice when our common sense pre-conceptions and new ideas aren’t talking to each other?

Why Am I Obsessed With This?

This is the fear that keeps me awake at night:

The students in the first example had learned in class not to discuss certain aspects of their own ideas or models. In particular, they had learned not to talk about “What things are like?” …

The students in my second and third examples had learned that their ideas were worthless (and confusing to think about).

The problem with (some) guided inquiry like this is the illusion of learning. Instructors doing these kinds of “check outs” can convince themselves that students are building powerful scientific models, but really students are just learning not to share any ideas that might be wrong, not to have conversations that they aren’t supposed to have, and to hide interesting questions and insights that are outside the bounds of the “guided curriculum”.

At the end of the day, if students are learning to avoid taking intellectual risks around the instructor, that instructor doesn’t stand a chance of helping those students learn.

(Read the whole thing from Brian Frank)

Which kinds of assessments do you think discourage students from taking intellectual risks around the instructor?  My gut feeling is that anything along the lines of “elicit-confront-resolve” is a major contributor, but I hope that having more data to look at will help me confirm this.

Pros: I Get Honest and Motivated Too

To be clear, I’m not suggesting that no one else has ever done this.  It’s common to ask students “how were you thinking it through”, such as when discussing a mistake they made on a test.

I don’t want to just do it, though.  I want to do it better than I did last year.  I want to systematically keep track of student ideas and, together with the students, use those ideas to co-create the curriculum. Even the wrong ideas.  Especially the wrong ideas.  I want them to see what’s good in their well-thought out, evidence-based “wrong” answers, and see what’s weak about poorly thought out, unsubstantiated “right” answers.  I want them to do the same for the ideas of their classmates, especially the ideas they don’t share.

It means that sometimes we go learn about a different topic.  If they’re generating curiosity and insight about parallel circuits, I’m not going to force them to shift to series circuits.  It wastes momentum (not to mention goodwill… or what you might call “engagement” or “motivation”).  They know what the goal of the course is; they’ve paid good money and invested their time in reaching that goal.  We come up with a plan together of what it makes sense to learn about next, so that we move closer to the goal.

Want to help me improve?  Here’s the help I could really use.   If you were one of the people whose first reaction to my original post was “I already know that” — either I already know that to be true, or I already know that to be false… what would have helped you respond with curiosity and perplexity, adding your idea as a valuable one of many?  If that was your response, what made it work?

I’ve been looking for new ways every year to turn over a bit more control to the students, to help them use that control well, and to strike a balance between my responsibility to their safety (in their schoolwork and their future jobs) with my responsibility to their personal and collective self-determination.

One tiny change I made this year is to use more “portfolio-style” assessments.  If you work for the same institution I do, you know that “portfolio” can mean a bewildering variety of things… I’m using it here in the concrete sense used by artists and architects.  So far this semester, that looks like doing in-class exercises where students work on 3-5 examples of the same thing. For example, our first lab about circuits required students to hook up 3 circuits, using batteries, light bulbs, and switches, and draw what they had built.  On the second lab day, I asked them to build the same circuits again, based on their sketches, and add measurements of voltage, current, and resistance.  On the third day, they practised interpreting the results, using sentence prompts.

But the “assignment” wasn’t “hook up a circuit.”  The skills I was assessing were “Interpret ohmmeter result”, “Interpret voltmeter results”, “Document a circuit”, etc.  So I asked them to choose from among the circuits they had worked on, and let me know which one (or two) best showed their abilities.

I haven’t reviewed the submissions yet, but I’m anticipating that they’ll need feedback not only on the skill of interpreting a circuit but also on the skill of self-assessment.

In support of this, I’ve had students evaluate the data gathered by the entire class.  Part of my hope is that seeing each other’s work and noticing what makes it easier or harder to make sense of will help them better assess their own work.  What suggestions do you have for helping students get better at choosing which of their work best demonstrates their skills?

SBG superhero

I stole this graphic from Kelly O’Shea. If you haven’t already, click through and read her whole blog.

By last winter, the second year students were pretty frustrated.  They were angry enough about the workload to go to my department head about it.  The main bone of contention seemed to be that they had to demonstrate proficiency in things in order to pass (by reassessing until their skills met the criteria), unlike in some other classes where actual proficiency was only required if you cared about getting an A.  Another frequently used argument was, “you can get the same diploma for less work at [other campus.]” Finally, they were angry that my courses were making it difficult for them to get the word “honours” printed on their diploma.  *sigh*

It was hard for me to accept, especially since I know how much that proficiency benefits them when competing for and keeping their first job.  But, it meant I wasn’t doing the Standards-Based Grading sales pitch well enough.

Anyway, no amount of evidence-based teaching methods will work if the students are mutinous.  So this year, I was looking for ways to reduce the workload, to reduce the perception that the workload is unreasonable, and to re-establish trust and respect.  Here’s what I’ve got so far.

1. When applying for reassessment, students now only have to submit one example of something they did to improve, instead of two.  This may mean doing one question from the back of the book.  I suspect this will result in more students failing their reassessments, but that in itself may open a conversation

2. I’ve added a spot on the quiz where students can tell me whether they are submitting it for evaluation, or just for practise.  If they submit it for practise, they don’t have to submit a practise problem with their reassessment application, since the quiz itself is their practise problem.  They could always do this before, but they weren’t using it as an option and just pressuring themselves to get everything right the first time.   Writing it on the quiz seems to make it more official, and means they have a visible reminder each and every time they write a quiz.  Maybe if it’s more top-of-mind, they’ll use it more often.

3. In the past, I’ve jokingly offered “timbit points” for every time someone sees the logic in a line of thinking they don’t share.  At the end of the semester, I always bring a box of timbits in to share on the last day.  In general, I’m against bribery, superficial gamification (what’s more gamified than schooling and grades??), and extrinsic motivation, but I was bending my own rules as a way to bring some levity to the class.  But I realized I was doing it wrong.  My students don’t care about timbits; they care about points.  My usual reaction to this is tight-lipped exasperation.  But my perspective was transformed when Michael Doyle suggested a better response: deflate the currency.

So now, when someone gives a well-thought-out “wrong” answer, or sees something good in an answer they disagree with, they get “critical thinking points“.  At the end of the semester, I promised to divide them by the number of students and add them straight onto everyone’s grade, assuming they completed the requirements to pass.  I’m giving these things out by the handful.  I hope everybody gets 100.  Maybe the students will start to realize how ridiculous the whole thing is; maybe they won’t.  They and I still have a record of which skills they’ve mastered;  and it’s still impossible to pass if they’re not safe or not employable. Since their grades are utterly immaterial to absolutely anything, it just doesn’t matter.  And it makes all of us feel better.

In the meantime, the effect in class has been borderline magical.  They are falling over themselves exposing their mistakes and the logic behind them, and then thanking and congratulating each other for doing it — since it’s a collective fund, every contribution benefits everybody.  I’m loving it.

4. I’ve also been sticking much more rigidly to the scheduling of when we are in the classroom and when we are in the shop.  In the past, I’ve scheduled them flexibly so that we can take advantage of whatever emerges from student work.  If we needed classroom time, we’d take it, and vice versa.  But in a context where people are already feeling overwhelmed and anxious, one more source of uncertainty is not a gift.  The new system means we are sometimes in the shop at times when they’re not ready.  I’m dealing with this by cautiously re-introducing screencasts — but with a much stronger grip on reading comprehension comprehension techniques.  I’m also making the screencast information available as a PDF document and a print document.  On top of that, I’m adopting Andy Rundquist’s “back flip” techniquescreencasts are created after class in order to answer lingering questions submitted by students.  I hope that those combined ideas will address the shortcomings that I think are inherent in the “flipped classroom.”  That one warrants a separate post — coming soon.

The feedback from the students is extremely positive.  It’s early yet to know how these interventions affect learning, but so far the students just seem pleased that I’m willing to hear and respond to their concerns, and to try something different.  I’m seeing a lot of hope and goodwill, which in themselves are likely to make learning (not to mention teaching) a bit easier.  To be continued.

Last week in class, I showed some student examples of authentic, non-canonical thinking.  I asked the class to identify what they saw as good in those examples.  Here’s what they said:

“It’s honest.

It talks about electrons and energy.

It talks about physical cause.

It’s about the real world.

They noticed patterns.

They used analogies and metaphors.

They broke the ideas into parts.

They asked questions — clarifying and precision.

The were trying to find the limits of when things were true.

They said they didn’t know.

They proposed a hypothesis.

They said what seemed weird.

At a glance, it seems people wrote more than usual that day about what they think might be happening in their circuits.  I’ll post more when I read them… but I’m hopeful.

My last post was about encouraging my students to re-evaluate what they think is certain.  I’m trying to help them break the habit of arguing from authority, and encourage them to notice their own thinking… and even to go so far as exposing that thinking to the class!  That’s going to be scary, and it depends on creating a supportive climate.

I responded to a comment on that post, in part: “I do realize that I’m pulling the rug out from under their trust in their own perception of reality, and that’s an unpleasant experience no matter what. Sometimes I think this is actually a spiritual crisis rather than a scientific one.”  To be fair, I’m careful not to suggest that their perception is invalid; only that it is important to notice the evidence that underlies it.  But that means considering the possibility that there isn’t any, or isn’t enough.  In the conversations that follow, the students talk about wondering whether certainty exists at all, and whether anything exists at all, and what knowing means in the first place.  That leads to what it means to “be right”… and then what it means to “do right.”

My best guess is that they have tangled up “right and wrong test answers” with “right and wrong moral behaviour” — being a “good person” means being a good student… usually a compliant one.

So, I’m provoking a moral, or maybe a spiritual, crisis — or maybe exposing an underlying crisis that was there all along.  What do I do about it?  How do I help students enter into that fear without being immobilized or injured by it?  They don’t know what to do when the rigid rules are removed, and I don’t know what to do when they get scared.  What do we do when we don’t know what to do?

Our classroom conversations range over ontology, epistemology, ethics, and, yes, faith. I realize I’m treading on thin ice here; if you think opening a conversation about faith and spirituality in my classroom (or on this blog) is a mistake, I hope you’ll tell me.  But I don’t know how to talk about science without also talking about why it’s not faith, to talk about truth and integrity without talking about what it means to do what’s “right”, why all of these might contribute to your life but one can’t be treated as the other.  And it’s a line of conversation that the students dig into avidly, almost desperately. Putting this stuff on the table seems to offer the best possibilities for building trust, resilience, and critical thinking.

So when the students open  up about their fear and anger around what “right and wrong” can mean, I go there (with care and some trepidation).  I’m careful not to talk about particular sects or creeds — but to invite them to think about what they think of as morally right and wrong,  and why models of atomic structure don’t fit into that structure.

There is occasionally some overlap though.

A historical figure I’ve learned a lot from wrote in her journal about re-evaluating an especially weighty authority…

And then he went on … “Christ saith this, and the apostles say this;’ but what canst thou say?” …  This opened me so, that it cut me to the heart; and then I saw clearly we were all wrong. So I sat down … and cried bitterly… “We are all thieves; we are all thieves; we have taken the [ideas] in words, and know nothing of them in ourselves.”

Since this belongs to a particular faith community, I don’t bring it into the classroom.  I think about it a lot though; and it’s the spirit I hope students will bring to their re-evaluation of the high school physics they defend so dearly.

If I expect them to respect the “wrong” (bad?  EVIL??) thinking of their classmates, it’s crucially important that they feel respected.  If I want them to stop arguing from authority, I have to be meticulous about how I use mine. One technique I’m going to try tomorrow is sharing with the class some of the “cool moves” I noticed on the most recent quiz.

Despite my angst about this issue, I’m actually thrilled by the curious, authentic, and humble thinking that’s happening all over the place.  So tomorrow I’ll show some of these (anonymous) examples of non-canonical ideas and explain what I think is good about them.  I’ll especially make sure to seek out a few from the students who are the main arguers from authority.

2 3 4 5 6 7 8 9 10

Keep calm because I already knowCreating a classroom culture of inquiry is getting better and better every September in most ways. It’s especially working well to reassure the students with little previous physics experience, to excite the students with previous unpleasant experiences with physics, to challenge the students who found previous physics classes boring or stifling, and to empower students who’ve been marginalized by schooling in general. But one thing I’m still struggling with is responding well to the students who have been taught to uncritically regurgitate correct answers — and who’ve embraced it.

How do I get curious about their ideas?  My conflict mediation coach suggests finding out what need that meets, what they got from that experience that they’re not getting elsewhere.  I confess that I’m afraid to find out.  I’m also afraid of the effect they have on the other students.  Their dismissive insistence that other people’s theories are “wrong” can quickly undo weeks of carefully cultivating a spirit of exploring and evaluating the evidence ourselves; their pat answers to other people’s questions make it seem like it’s stupid to be curious at all.

I have a bunch of options here… one is an activity called “Thinking Like a Technician” where I introduce the idea that “believing” is different from provisionally accepting the theory best supported by the current evidence.  I show the Wikipedia page for atomic theory to draw out the idea that there are many models of the atom, that all of them are a little bit wrong, and that our job is to choose which one we need for which situations, rather than to figure out which one is right.  That seems to help a bit, and give us some points of reference to refer back to.

I show a video with Malcolm Longair and Michio Kaku explaining that atoms are made of mostly nothingness.  But I think it makes it worse.  The students who are excited get more excited; the ones who feel like I’m threatening the authority of the high school physics teachers they idolize get even angrier.  For the rest of the class, it’s wonderful — but for this subset, it’s uncomfortably close to Elicit-Confront-Resolve.  They experience it as a form of “expose-and-shame“, and unsurprisingly retaliate.  If they can’t find some idea of mine to expose and shame, they’ll turn on the other students.

Something I’m trying to improve: How do I help students re-evaluate things that seem solid?  It’s not just that they respond with defensiveness; they also tend to see the whole exercise of inquiry (or, as some people call it, “science”) as a waste of time.  What could make it worth re-examining the evidence when you’re that sure?


My definition of “inquiry” as an educational method: it’s the students’ job to inquire into the material, and while they do that, it’s my job to inquire into their thinking.

So yes, the goal is really “inquiry-based learning”.  I’ve written lots before about what the students do.  But this post is about what I do. I have to inquire at least as much as the students do.

I’ve written that before, more than once… but do you think I can find it on my own blog?  Nope.  Also, I stole it originally, probably from Brian Frank.  Do you think I can find it on his blog?  *sigh*  If anyone finds it, in either place, let me know, would ya?

What’s new about my ability to inquire into my students’ thinking is that I’m treating it more like a qualitative research project.  Someday I’ll go take a qualitative methods course and actually know what I’m talking about (I’m taking suggestions for methods texts, courses you liked, or profs you respect)… but until then, I’m muddling through better than usual.

Activities That Help Me Inquire Into Student Thinking

Playdough Circuit

Published by Science Buddies

We spend the first week doing things that are designed for them to play with their current ideas and me to learn to find out about them.  In the past I set out piles of AA batteries, light bulbs, sockets,  and switches.  I’d ask students to build a circuit that worked, one that looked like it should but didn’t, and a third one of any description.  Students drew their circuit on paper and wrote down what they noticed, as well as what they wondered (props to Brian again for the wording of the prompt, which helps break down the fear induced by writing the “wrong” thing in a lab report “observation” section).  The noticing and wondering helps me learn a lot about their ideas.

This year I added a day before light bulbs where they made circuits out of playdough.  It was silly, messy, and fun.  It also yielded lots of new info about their thinking about electrons, voltage, current, charge, etc., which I asked them to record on this handout.



Whatever they write down ends up in a spreadsheet that looks like this:

2015 Intake ideas so far Name Date Context V R I P C Energy Potential
voltage is potential difference amount of potential energy between points XXXXXX 09-Sep-15 Squishy Circuits x x x
Insulators stop energy from passing through XXXXXX 09-Sep-15 Squishy Circuits x
Conductors allow the transfer of energy XXXXXX 09-Sep-15 Squishy Circuits x


I just keep adding tags on the right to keep track of whatever topic I need to keep track of.  That way I can sort by topic, by date, or by student.  It also helps me see which activities yielded what kind of curiosity.

My Favourite Ideas So Far

What holds matter together?

Are electrons what power actually is?

Batteries in a row must connect to each other like how magnets connect together to attract each other (2 negatives connected doesn’t work)

Closing the switch should double the power supply, but there was no noticeable difference. Why?

When negative side of battery reaches positive side of other battery, shouldn’t it be a complete circuit?

Put the switch on the other side of the bulb.  Does it matter?

Why did the 2 dim lights light at all, when the path of least resistance was through the 1 light bulb path?  In my “double the wires” circuit, they didn’t light at all.

Why don’t any of the bulbs turn on?  I would have thought that at least the first bulb would faintly glow.

Resistance is how much current is lost in the current

What separates Watts from Volts?

If I Inqire Into My Own Thinking…

What’s the pattern here about which ideas are exciting to me?  Well, quite a few of them are challenges to common misconceptions.  Despite my resistance, it seems I’ve still got a bit of a case of misconception listening.

The other pattern is that they all point either to questioning cause, or improving precision.  Those are discipline-specific skills, part of the “implicit curriculum” that people in my field often think of as unlearnable “aptitudes” instead of skills.  So there’s a practise of inclusion underlying my choices — making these skills explicit benefits everyone but especially the people with little previous exposure to technical fields.  Cause and precision are also things that I personally find satisfying and beautiful.  No coincidence about the overlap — I chose my field for a reason.  I’ll have to be careful to encourage curiosity wherever I find it, not just in the students who ask the kinds of questions I like best.

Last week, I presented a 90-minute workshop on Assessment Survival Skills during a week-long course on Assessing and Evaluating.  Nineteen people attended the workshop.  Sixteen were from the School of Trades and Technology (or related fields in other institutions).  There were lively small-group discussions about applying the techniques we discussed.

Main Ideas

  1. Awesome lesson plans can help students learn, but so can merely decent lesson plans given by well-rested, patient teachers
  2. If grading takes too long, try techniques where students correct the mistakes or write feedback to themselves
  3. If they don’t use feedback that you provide, teach students to write feedback, for themselves or each other
  4. If students have trouble working independently in shops/labs, try demonstrating the skill live, creating partially filled note-taking sheets, or using an inspection rubric
  5. If you need more or better activities and assignments quickly, try techniques where students choose, modify, or create questions based on a reference book, test bank, etc.
  6. If students are not fully following instructions, try handing out a completed sample assignment, demonstrating the skill in person, inspection reports, or correction assignments

When I asked for more techniques, the idea of challenging students to create questions that “stump the teacher” or “stump your classmates” came up twice.  Another suggestion was having students get feedback from employers and industry representatives.

Participants’ Questions

At the beginning of the workshop, participants identified these issues as most pressing.

New Doc 47_1

Based on that, I focused mostly on helping students do their own corrections/feedback (#3), and how to generate practice problems quickly (#5).  Interestingly, those were the two ideas least likely to rate a value rating of 5/5 on the feedback sheets — but the most often reported as “new ideas”.  I think I did the right thing by skipping the techniques for helping students follow instructions (#6), since that was the idea people were most likely to describe as one they “already use regularly.” Luckily, the techniques I focused on are very similar to the techniques for addressing all the concerns, except for a few very particular techniques about reducing student dependence on the instructor in the shop/lab (#4), which I discussed separately.  I received complete feedback sheets from 18 participants and 16 of them identified at least one idea as both new and useful, so I’ll take that as a win.  Also, I got invited to Tanzania!

Participants talked a lot about what it’s like to have students who all have different skills, abilities, and levels of experience.  Another hot topic was how to deal with large amounts of fairly dry theory.  We talked a lot about techniques that help students assess their skills and choose what content they need to work on, so that students at all levels can challenge and scaffold themselves.  We also talked about helping students explore and choose and what format they want to use to do that, as a way of increasing engagement with otherwise dry material.  I didn’t use the term, but I was curious to find out in what ways Universal Design for Learning might be the answer to questions and frustrations that instructors already have.  If I ever get the chance, as many participants requested, to expand the workshop, I think that’s the natural next step.

Feedback About the Workshop

Overall feedback was mostly positive. Examples (and numbers of respondents reporting something similar):

“Should be a required course”

“I liked the way you polled the class to find out what points to focus on,” “tailored,” “customized” (4)

“Well structured,” “Interactive” (7)

“Should be longer” (11)

“Most useful hour and a half so far” (4)

Feedback About Handout

“If someone tries to take this from me, there’s gonna be a fight!”

Feedback About Me

“Trade related information I can relate to” (4)

“High energy,” “fun,” “engaging,” “interesting” (5)

“You were yourself, didn’t feel scripted,” “Loved your style,” “Passionate” (3)

“That’s the tradesperson coming out!”

This morning, I’m presenting a workshop on Assessment and Evaluation Survival Skills.  The themes are

  • How to help students learn
  • While giving fair and accurate grades
  • Without losing your mind.


Stay tuned for an update on the questions and techniques that emerge.

Participant handout (DOC, PDF)

Feedback form template (DOC, PDF)






Get every new post delivered to your Inbox.

Join 92 other followers